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A~tract--Flow patterns were investigated in vertical upward gas-liquid flow in a concentric and an 
eccentric annulus (eccentricity 50%). A new method for flow pattern identification is proposed based on 
probability density function analysis of conductance probe signals. Flow pattern maps have been 
constructed and mathematical models are proposed which predict the flow pattern transitions. 
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INTRODUCTION 

Two-phase flow in concentric and eccentric annuli occurs in a variety of important practical 
situations. The influx of the gas into the wellbore of an oil well creates two-phase flow in an 
annulus. During measurements in oil wells, the presence of the instrument creates annular passages. 
Better understanding of two-phase flow in an annulus will provide more reliable design methods 
for many types of industrial equipment, e.g. double pipe heat exchangers, water-cooled nuclear 
reactors and serpentine boilers. 

The significance of the flow patterns in predicting two-phase flow parameters has been discussed 
by several investigators (Wallis 1969; Hewitt & Hall-Taylor 1970; Taitel et al. 1980; Hewitt 1982). 
Considerable advances have been made in modeling flow pattern transitions in circular tubes 
(Dukler & Taitel 1986). There is, however, a lack of experimental data on flow patterns in an 
annulus. Sadatomi et al. (1982) suggested a flow pattern map for different conduit cross-sectional 
shapes, including a concentric annulus, but provided no information on the factors affecting the 
flow pattern transitions. This study examines these factors and proposes models to predict the 
transitions. Since most of the reported data on flow patterns have been derived by direct visual 
observations, which is largely subjective, part of this study focuses on developing a more objective 
flow pattern identification method. 

EXPERIMENTAL SYSTEM 

The schematic diagram of the experimental facility is shown in figure 1. The test section consisted 
of two acrylic tubes, which are electrically non-conducting, the inner tube having an o.d. of 
0.0508 m and the outer tube with an i.d. of 0.0762 m. The column length from the point of the 
air injection to the top of the column was 6.93 m. 

The inner tube could be moved with the help of four sets of spacers (denoted by S in figure l) 
so that any degree of eccentricity could be achieved. Air was supplied at 690 kPa from a central 
compressed air line. The incoming air was filtered, regulated to the desired pressure and measured 
through rotameters or an orifice meter. The air injection system, located at a distance of 0.076 m 
from the bottom of the column, consisted of either four or eight polyethylene tubes (0.0127 m dia). 
Needle valves were used on each of the four tubes for low gas flow rates to maintain constant flow, 
while for high gas flow rates the needle valves were removed and eight injectors were used instead 
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Figure I. The flow loop. MS = measuring station, S = spacer. 

of four. Water was introduced radially through eight ports (0.0127 m dia) at a distance 0.508 m 
above the air injectors. Water and air flowed up the annulus and discharged into an overhead 
separator. Air was vented to the atmosphere while water was circulated through the system in a 
closed cycle by means of a centrifugal pump. 

Flow pattern identification was accomplished by the conductance probe method originally 
proposed by Solomon (1962) and Griffith (1964) and improved by Barnea et al. (1980). The 
adaption of this idea to the annular configuration is shown in figure 2 which shows the peripheral 
location of the conductance probes. Probes A and C were made of silver-plated copper-clad steel 
wire (0.3 mm dia), Teflon-coated with an o.d. of 0.97 mm, having only the tip electrically exposed 
to the two-phase mixture. Both probes were movable so that the tip could be adjusted near the 
center of the gap. Probes B and D, made of stainless steel wire (0.3 mm dia), were fixed and 
mounted flush with the inside wall of the outer tube and the outside wall of the inner tube, 
respectively, and located 180 ° apart around the perimeter. Two grounds were utilized, probes 1E 
and 2E (0.0127 m dia) mounted flush on the inner and outer tubes, respectively. A power supply 
provided variable d.c. voltage. Current flow between each probe and either ground was passed 
through a fixed resistor and the resulting time-varying voltage drop was the signal of interest. For 
example, the presence of liquid in the space between probes A and 1E would give a high voltage 
reading, VA, while an air gap covering probe A would give zero voltage. The conductance probe 
measurements were carried out at two axial locations along the test section, indicated as MS # 1 
and MS # 2 in figure 1. The probe plane was 0.0508 m below the top of each measuring station. 
Details of the equipment are given in Kelessidis (1986). 

FLOW DESCRIPTION 

In gas-liquid flows, the two phases may distribute in a number of geometrical configurations 
depending on the flow rates, shape and size of the conduit, inclination and fluid properties. Visual 
observations indicate that natural groupings or patterns exist for which the spatial distribution of 
the two phases is more or less the same. The flow patterns observed in vertical concentric or 
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Figure 2. Schematic diagram of the conductivity probes. 

eccentric annuli are similar to those seen in round tubes. These four basic flow patterns are pictured 
in figure 3: 

Bubble flow. The gas phase is distributed in the continuous liquid phase in the form 
of discrete bubbles. 
Slug flow. Gas flows mainly in large bubbles designated as "Taylor bubbles". There 
is a difference between the Taylor bubbles observed in an annulus and those observed 
in round tubes. The latter are bullet shaped, with a diameter almost equal to the pipe 
diameter, moving upward essentially axisymmetrically. Taylor bubbles in an annulus 
are wrapped around the inner tube. Liquid falls downwards in the space between the 
Taylor bubble and the walls of the annulus as well as in the peripheral area not 
occupied by the Taylor bubble. In the latter case, the liquid carries distributed 
bubbles. The liquid flows upwards in the liquid slugs which separate the Taylor 
bubbles, bridging the annulus and carry distributed bubbles. 
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Figure 3. Schematic representations of flow patterns for upward two-phase flow in a concentric annu|us. 
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Churn flow. This distribution has similar characteristics to slug flow but is more 
chaotic. The gas is moving continuously upwards lifting the liquid to a certain height. 
The liquid then falls, accumulates, bridges the two tubes of the annulus and is lifted 
up by the gas again. This chaotic oscillatory motion of the liquid is characteristic of 
churn flow. 
Annular flow. Liquid flows upwards as a film on the walls of both the inner and the 
outer tube, while the gas flows upwards in the annular space between the liquid films 
carrying liquid droplets. At very high gas and liquid flow rates large concentrations 
of droplets exist in the gas core. The droplets tend to agglomerate and coalesce 
forming large lumps of frothy two-phase mixture. This condition, a subset of the 
annular flow pattern, is designated as annular flow with lumps. 

Transition between patterns is never sharply defined. As the flow rates are changed and the 
patterns start changing, one observes features of the flow which may be characteristic of two 
patterns. In this work attempts have been made to define these transition zones. 

FLOW PATTERN I D E N T I F I C A T I O N  

Classification of the flow patterns was accomplished using probability density function (PDF) 
analysis of the voltage-time traces obtained from the conductance probes. Consider a voltage-time 
trace signal V(t), where the voltage scale is divided into equal increments of width w and the time 
scale into equal increments of width AT (figure 4). If during the observation period T the voltage 
is seen within the range (v - w/2, v + w/2) for a total of ni times, then, for a stationary time series, 
the PDF, p(v), is defined as 

p(v)= lim P[v'w] !!ml (lirn Tx) 
w~0 w = 7 ' [1] 

where P[v,w] is the probability distribution function and Tx = ni AT. The data taken for the flow 
pattern identification was proved stationary by applying the RUN TEST (Bendat & Piersol 1971). 
The time interval A T for this study was 1 ms. Plots of the PDF of the measured voltage from probes 
A or C to either ground could be expected to display the following characteristics: 

Bubble flow. The probe tip will be exposed primarily to liquid and little gas. Hence, 
the PDF plot will show a distribution with a single peak near the maximum voltage 
values (figure 5). 
Slug flow. The probe will encounter either all gas, as the Taylor bubble passes, or 
a bubbly mixture in the presence of liquid. The PDF should therefore be bimodal 
with one peak essentially at zero voltage and another peak at a high voltage, as in 
bubble flow (figure 6). 
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Figure 4. Voltage--time trace to illustrate the estimation 
of the PDF, p(v) = lira (niAT/Tw). 
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Figure 5. PDF plot for bubble flow. ULs = 0.01 m/s, 
U~s = 0.03 m/s, Vm,x = 1340 inV. 
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Annular flow. The voltage signal is always zero. Therefore, a single peak at zero is 
expected (figure 10). 

Characterizing these three flow patterns using PDF analysis of  conductivity probe signals is 
similar to that proposed by Jones & Zuber (1976) for X-ray beam attenuation. However, when 
visual access is possible such a qualitative description of  the PDF curves simply replaces the even 
more qualitative visual description of  the flow itself. While well-established patterns are easy to 
identify either visually or from PDF curves, the transition between the patterns is not clear. A more 
quantitative basis for determining when transition is taking place, as indicated by the data, is 
suggested here from the analysis of  the PDF data. 

In what follows typical PDF plots are presented for each flow pattern and flow pattern transition. 
PDF is plotted vs V~ Vmax, where Vmax is the maximum value of the voltage for which a non-zero 
PDF value is estimated. The plots were prepared from signals taken by probe C with ground 1E. 
Similar behavior was observed for probe C with ground 2E as well as for probe A with either 
ground for the concentric annulus. The results from probe A with ground 1E were slightly different 
for the eccentric annulus for reasons discussed later. Probes B and D did not reveal any significant 
information regarding the flow patterns. Based on the signals from both probes, however, it was 
evident that there was always a liquid film both on the inner and outer tubes of the annulus when 
a Taylor bubble was present, as well as in annular flow. This information was then utilized in 
deriving the mathematical models describing the flow pattern transitions. 

Bubble flow 

A single peak exists at V/Vma x n e a r  1.0 such that SP dv = 1 for V/Vma x > 0.75 (figure 5). 

Slug flow 
Two well-defined peaks exist, one in the range of 0.75 ~< V/Vma~ <<. 1.0 and one which has a 

maximum at zero. For well-established slug flow to exist we suggest that Taylor bubbles must 
occupy at least 20% of  the length of the column. Thus, the peak at low voltage values 
(V/Vma~ <<. 0.25) must have an integral > 0.2 (figure 6). 

Bubble-slug transition 

If the PDF is bimodal but the integral under the peak at low voltage values is < 0.2, the pattern 
is characterized as one of  transition between the bubble and the slug flow patterns (figure 7). 

Churn flow 
The PDF displays a single peak again but now it is located at low voltages with its maximum 

at zero. The peak in the range 0.75 ~< V/Vma~ ~< 1.0, which is characteristic of  coherent liquid slugs, 
has disappeared. However, one always observes low but non-zero PDF at high voltages which 
indicate liquid bridging (figure 8). 

80" 100 

80 
6O 

=" E 60 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2 0.4 0.6 0.8 1,0 

VNmax V/Vmax 

Figure 6. PDF plot for slug flow. ULS = 0.01 m/s, Figure 7. PDF plot for the transition from bubble to slug 
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Figure 8. PDF plot for churn flow. ULS=0.01 m/s, 
Uas = 3.82 m/s, V~x = 720 mV. 
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Figure 9. PDF plot for the transition from slug to churn 
flow. ULS = 0.01 m/s, u m = 1.72 m/s, V~, = 880 mV. 

Slug-churn transition 
With the concept that for slug flow to exist, the liquid slugs carrying gas bubbles must be present 

over at least 20% of the length of  the column, we characterize this transition as one where the 
peak at high voltages which existed for slug flow can still be observed but its integral is now < 0.2 
(figure 9). 

Annular flow 

Since the probe output is zero voltage, one observes a single peak at this voltage (figure 10). 

Churn-annular transition 

A condition is characterized as transition from churn to annular flow when there is some 
distribution of the PDF at low values of the voltage (V/Vmax ~< 0.25), but the most probable value 
is zero and hence a large peak at zero voltage is observed (figure 11). 

Annular flow with lumps 

This distribution is characterized by the appearance of frothy aerated liquid at high gas and 
liquid flow rates. There is occasional bridging between the two tubes of the annulus but the void 
fraction is high, resulting in a very low amplitude voltage signal. The PDF therefore exhibits a single 
peak, not at zero, but at low voltage (<0.5Vmax) (figure 12). 

Churn-annular with lumps transition 

The PDF displays the characteristics of both flow patterns. A single peak is observed at low 
voltage but there is also a low but non-zero PDF at high voltage values (figure 13). 
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Figure 13. PDF plot for the transition from churn to 
annular flow with lumps. ULS = 1.16 m/s, Uos = 3.6 m/s, 

Vma x = 720 mY. 

E X P E R I M E N T A L  R E S U L T S  

Data  was taken at the two measuring stations over a range of  gas (0.000149.0851 kg/s) and liquid 
(0.019-4.680kg/s) flow rates and the data classified as to the flow pattern using the criteria 
discussed above. Flow pattern maps were then constructed for the concentric and the eccentric 
annulus at both measuring stations. Typical results are presented in figures 14 and 15 for the 
concentric and the eccentric annulus, respectively, both at measuring station 1. In the eccentric 
annulus the probe was located on the wide side. The eccentricity, defined as the ratio of  the distance 
between the axes of  the tubes to the gap width of the concentric annulus, was 50%. 

Analysis of  the experimental results indicated that the closeness of  the measuring station to the 
discharge location does not have any significant effect on the flow pattern transitions and the 
differences observed are within experimental error [figures 16(a, b)]. The degree of eccentricity has 
little effect on the flow pattern transitions and results in delayed local behavior associated with 
particular flow patterns on the narrow side of  the annulus compared to the wide one. For  example, 
for any liquid rate, the transition from bubble to slug flow is detected to take place at lower gas 
rates on the wide side. That  is, when Taylor bubbles first make their appearance they travel 
predominantly on the wide side with the narrow side giving the appearance of  bubbly flow. As the 
gas rate is increased, the regular occurrence of Taylor bubbles is observed on the narrow side as 
well. The delay is characteristic of  all transitions. When the gas rate is increased and annular flow 
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Figure 14. Flow pattern map. PDF analysis of time traces. MS # 1; concentric annulus. ~ ,  Bubble flow; 
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Figure 15. Flow pattern map. PDF analysis of  time traces. MS # 1; eccentric annulus. Key as in figure 14. 

is first established on the wide side, the condition on the narrow side is still one of churning. These 
results were evident from the comparison of the flow pattern map derived from PDF analysis of 
the signal taken from probe A with probe 1E vs that from probe C with probe 2E. 

M A T H E M A T I C A L  M O D E L S  F O R  T H E  F L O W  P A T T E R N  T R A N S I T I O N S  

The transition criteria which will be developed are based largely on the ideas presented by Taitel 
et el. ( 1 9 8 0 ) .  

A. Concentric Annulus 

Bubble-slug flow transition 

Low liquidflow rates. Visual observations indicate that bubble flow in an annulus has similar 
characteristics to that in round tubes. As the gas flow rate is increased (at low liquid flow rates) 
the bubble density increases. At these low liquid flow rates the bubbles rise vertically in a zig-zag 
motion occasionally colliding to form larger bubbles. A point is reached where the discrete bubbles 
become so closely packed that many collisions occur and the rate of agglomeration to form larger 
bubbles increases sharply. This results in the transitions to slug flow. 
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Experimental evidence indicates that the transition from bubble to slug flow occurs at values of 
the void fraction ranging from 0.25 to 0.30 (Griffith & Synder 1964). Radovcich & Moisis (1962) 
provided a semi-theoretical approach postulating that the transition takes place when the frequency 
of collisions of the discrete bubbles is very high. It was shown that this happens at a void fraction 
around 0.30. Taitel et al. (1980) derived a value of 0.25. They assumed the bubbles to be spherical 
and arranged in a cubic lattice. Therefore, the maximum allowable packing occurs at a void 
fraction of 0.52. They stipulated, however, that the closest distance between the bubbles before 
transition must be one which permits some freedom of motion for each individual bubble. If this 
spacing is assumed to be approximately half the radius of the bubbles, this corresponds to about 
25% voids. 

Based on the above mechanism, the geometry of the channel does not enter into the derivation 
for the value of the void fraction at the transition of bubble to slug flow. Venkateswararao et al. 

(1982) used similar arguments to derive the value of 0.25 for the transition from bubble to slug 
flow in a rod bundle. Their model compared well with their experimental data. It is assumed, 
therefore, that at liquid flow rates low enough, such that bubble breakup due to turbulence is small, 
the transition from bubble to slug flow in a concentric annulus takes place when the void fraction 
averaged over the flow cross-section reaches the value of 0.25. 

If the gas bubbles rise with the velocity UG, this velocity is related to the superficial gas velocity, 
UGs, by 

tics = E Uc, [2] 

where E is the void fraction. Similarly, the average liquid velocity, UL, is related to the superficial 
liquid velocity, ULS, by 

ULS = (1 --QUL. 

If U0 is the rise velocity of the bubbles relative to the liquid, 

Uo=UL+Uo. 

[31 

[4] 

In this model, radial variations are ignored and UG and UL are assumed equal to the area average 
velocities. At low liquid rates, the bubbles are large enough, so that the rise velocity is independent 
of the bubble size and depends only on the physical properties of the two phases. Harmathy (1960) 
indicated that for a single bubble rising in an infinite medium, the rise velocity U0o~ is given by 

L P L  J 

where PG and PL are the gas and liquid densities, respectively, g is the acceleration due to gravity 
and a is the surface tension. Zuber & Hench (1962) indicated that for a bubble rising in a swarm 
of bubbles, the correct velocity U0 should be given by 

U0 = (1 - QlaUoo o. 

Equations [2]-[6], when combined, yield 

ULS = UGs ( 1 - Q  1.53(1 _ rg(o  po) ] TM 
E L ~ / "  

Letting E = ET = 0.25 for the transition from bubble to slug flow, [7] becomes 

TM" 
L PL J 

[6] 

[7] 

[8] 

Once the fluid properties are set, [8] will give the locus of the points at which the transition from 
bubble to slug flow takes place in a concentric annulus. For an air-water system at 25°C and a 
pressure of approx. 105 N/m 2, [8] gives curve E, shown as the dotted line in figures 16(a,b). The 
solid lines represent the boundaries of the experimental data for both measuring stations. Good 
agreement is observed between the theory and experiments for both measuring locations. The fact 
that there is a transition zone shown by the experimental data indicates that the transition to slug 
flow starts at a void fraction somewhat less than 0.25 and ends at a value slightly higher than 0.25, 
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in accordance with the observations reported for the transition in circular tubes which were 
discussed above. 

High l iquidflow rates. At high liquid flow rates, turbulent forces tend to break up any large 
bubbles and disperse the gas phase. This results in a finely dispersed bubble flow where the void 
fraction can exceed the value of 0.25 without the transition to slug flow taking place. The maximum 
stable diameter of a dispersed phase in an immiscible system can be derived from the theory 
developed by Hinze (1955). This diameter is derived by a force balance between surface tension 
forces and the forces due to turbulent fluctuations and is given by 

/ 6 \3/5 
dmax = k  ~LL) (ed) 2/5, [9] 

where k is a constant and ed is energy dissipation per unit mass. The experimental data of Clay 
(1940) indicated a value of k = 0.725. 

For turbulent flow in an annulus, the rate of energy dissipation per unit mass, ed, is given by 

ed = , [lO] 
fr PM 

where I de/dzlfr is the frictional loss given by 

r 
= Dhh PM U~, [111 

Uu is the mixture velocity 

D h is the hydraulic diameter 

UM = ULS + Uos, [ 12] 

Dh = D2 - DI, [13] 

PM is the mixture density, f is the friction factor and D 2 and D~ are the diameters of the outer and 
the inner tube, respectively, 

When the bubble size produced by this breakup process is so small that the bubbles move 
rectilinearly, then coalescence is not expected to take place even if the void fraction exceeds 0.25. 
This critical size, dcnt, is given by Brodkey (1967) as 

dcri t = [. O.4a 11/2 [14] 
(PL--PC)g] " 

If dmax ~< d~,t, the bubbles will remain spherical, move rectilinearly and the void fraction may exceed 
0.25 without the transition to slug flow taking place. 

The friction factor may be expressed as a function of the Reynolds number, Re = UMDh/VL, 

f =  Cf(Re) -n, [15] 

where VL is the liquid kinematic viscosity and n and Cf are constants. Setting dmax = de,t, all the 
above give 

0.4a T/2/pL \3/5 [- 2 /Dh\-"-]  2Is (p;ZL)gj J U~3-'°is=0"725" [161 

Interpolation of the data for friction is a concentric annulus of Jonsson & Sparrow (1966) for 
the diameter ratio used in this study (D2/D~ = 1.5) gave Cr = 0.0380 and n = 0.18. For an air-water 
system at 25°C and a pressure of approx. 105 N/m:, [16] gives for the present system, 

UM = ULS + Ucs = 1.726 m/s. [17] 

Equation [17] is shown as curve F in figures 16(a,b). The maximum allowable bubble density 
is 0.52, if one assumes the bubbles are spherical and arranged in a cubic lattice (Taitel et al. 1980). 
Therefore, curve F terminates at curve G, which relates ULS and U~s for E = 0.52 and is given by 

ULS = 0.92Ucs - 0.08 m/s. [18] 
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Due to limitations in pumping capacity, the maximum superficial liquid velocity that could be 
achieved was 1.8 m/s, which is below the transition region indicated by curve F. Therefore, this 
part of  the theory could not be tested by comparison with experimental data. 

Slug-churn f low transition 

Visual observations indicate that churn flow in an annulus is an entrance region phenomenon 
similar to that observed in round tubes (Taitel et al. 1980). Churn flow could be observed in regions 
close to the two-phase mixture injectors, while stable slug flow was seen to exist at distances farther 
away from the entrance region. 

Taitel et al. suggested that churn flow exists when the liquid slug is smaller than a critical, stable 
slug length. It was shown that this stable slug length is about 16 tube dia. Experimental 
measurements in round tubes indicate that the ratio of the liquid slug length to the pipe diameter 
during stable slug flow is essentially constant, although the reported value varies for the different 
investigators [e.g. Akagawa & Sakaguchi (1966) report a value of 7.5, Taitel et al. (1980) report 
a value of  16, while Fernandes (1981) reports a value of 21.5]. 

The liquid slug length ls in the annulus of the present study was measured using two conductance 
probes. The results are shown in figure 17. There is no systematic variation in the length of the 
liquid slug with the gas or the liquid flow rates. The average value of all I 1 measurements (for both 
the concentric and the eccentric annulus) is 1~ = 0.53 m with a standard deviation of SDts = 0.08 m, 
thus giving a dimensionless liquid slug length of 

l ,  = 20.7. [19] 
Dh 

It is proposed that the stability of  the liquid slug in an annulus is associated with the liquid falling 
as a film around the Taylor bubble. There may be an effect of  the liquid falling in the peripheral 
area not occupied by the bubble, but this is not considered in the following analysis. It is assumed 
that the liquid films falling around the inner and outer tubes can be considered as cylindrical wall 
jets. It can be shown (Rajaratnam 1976) that under the condition of  bm/R~ "~ 1, the cylindrical wall 
jet is behaving like a wall jet, where b m is the normal distance from the cylinder to the point where 
the velocity is half the maximum velocity and R t  is the radius of the cylinder. This condition holds 
for both the inner and the outer films, since the film thickness is very small. For plane wall jets, 
the velocity distribution has been found to be similar by Myers et al. (1963) and Schwarz & Cosart 
(1961), as reported by Rajaratnam (1976). Rajaratnam reports on the work of Verhoff(1963) who 
proposed an empirical expression which describes the similarity curve 

u j  = 1.4794y~/7[ 1 _ erf(0.67758yb)], [20] 
Umj 

where Yb = y/bm, uj is the jet velocity at some point (z, y), z is the axial coordinate, y is the radial 
distance from the wall and Umj is the maximum jet velocity located at some distance from the plane 
wall. Experimental evidence indicates that 

bm= 0.068z. [21] 
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It is proposed here that the liquid slug is stable if it is long enough so that the jet has been 
absorbed by the fluid and the velocity has slowed down to that of the surroundings. Hence, one 
searches for the conditions under which 

D2 - Dr. 
uj ~ l ; y - - * - - ,  z o ls. 

Umj 4 

Equation [20] shows that the above conditions are satisfied when 

is 
- -  = 22.4. [221 
Dh 

The above result is close to the experimental value, [19], despite the assumptions in the derivation, 
namely: 

(1) The liquid is confined and not of infinite extent. 
(2) The jet is cylindrical and not a wall jet. 
(3) The jet is discharging in a moving liquid stream (compound jet) and not in a 

stagnant pool of liquid. 

Since there are no additional data available on continuous slug flow in an annulus, no further 
check of [22] could be made. It should be noted that Taitel et al. (1980) used a similar approach 
to derive the value of l J D  = 16. The difference is that they modeled the liquid film as a free 
jet--which may be justified for flow in round tubes but not for flow in an annulus, because the 
gap size is generally small and furthermore, there are two liquid films present which merge to the 
center of the gap thus the films can no longer be modeled as free jets. 

The entry length required for the establishment of stable slug flow is determined according to 
the overtaking model proposed by Taitel et al. (1980). Consider two Taylor bubbles rising in a 
concentric annulus (figure 18). The top one is moving with a constant velocity UN, while the second 
one is rising with a velocity Uo. Experimental evidence (Kelessidis 1986) indicates that during stable 
slug flow, the rise velocity of Taylor bubbles is correlated to the mixture velocity UM by 

UN = CUM + Uac, [231 

where URC is the bubble rise velocity in a stagnant liquid in a concentric annulus, having the value 
of URC = 0.370 m/s for the annulus in this study, while C is a constant having the value of C = 1.55. 
Kelessidis has also shown that the bubble nose is asymmetric and speculated that the liquid velocity 
ahead of the bubble tip Ut has the value 

Ut = CUM. [241 

An exponential variation of the liquid velocity is assumed from the value of UN at z = 0 to the 
value of CUM at z = Is: 

1 
where fl is a constant which characterizes the decay rate. Taitel et al. used the value of ~ = 4.6 so 
that the decay rate at z = Is would be 99%, while for this study a decay rate of 99.9% was chosen 
so that somewhat better agreement with the experiments could be achieved. This results in a value 
of fl = 7. If the liquid slug is short, the trailing bubble accelerates and its velocity, Uc, is given 
by 

U G = U t + URC. [261 

The approach velocity is therefore given by 

d z =  
U c -  UN = URC exp(---~z). [271 

dt 

Following Taitel et al. (1980), the entrance length is estimated as follows: it is assumed that 
during the coalescence of two slugs, a new slug of double the length is created. The entrance length 
will extend up to the point where the length of the new slug formed during the coalescence period, 
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/L, will be Is~2, since the merger of the last two slugs will be quite slow. Integration of  [27] gives 
the time needed for the formation of a bigger slug. Summation of all the individual times and 
multiplication by Ur~ yields the estimated entrance length lE, 

_ ls UN ~ [- [[31L,'~l 7 
IE E "exp "---~'/--1 [28] 

/WRC,=OL \ is/ l 
where IL, takes the va lues . . .  Is~16, ls/8, l J4.  Using fl = 7 and ls = 22.4Dh, [28] becomes 

D/----E=22"96(cUM+l) ' h  \ URC [29] 

The solution of [29] for the annulus in this study is shown in figures 16(a,b) as curves H-1 and 
H-2 corresponding to the two measuring stations, namely for MS # 1, IE/Dh = 142, UM = 1.24 m/s; 
and for MS # 2, lE/Dh = 202, UM = 1.86 m/s. Comparison of theory with the experimental results 
shows good agreement for both measuring stations. 

Churn-annular transition 

It is proposed that the transition from churn to annular flow occurs when the void fraction for 
churn flow, ECh and the void fraction for annular flow, CA, are equal. A similar mechanism has been 
proposed by Venkateswararao et al. (1982) for this transition in a rod bundle. 

Let 6t and 62 denote the liquid film thickness on the outer surface of the inner tube and the inner 
surface of  the outer tube, respectively (figure 19), during annular flow. To effectively close the 
problem it is assumed that 6~ ~ 62 = 6. The gas flow area A~ is given by 

7~ 
AG = ~ [(D2 - 26) 2 - (D, + 26)2]. [30] 

Hence, the void fraction for annular flow EA is given by 

AG 46 
~:A ----- - -  = 1 At D2 - DI' [31] 

where A t is the total cross-sectional area. Consider a differential element of  the gas core of  length 
Az. A force balance, in the absence of  acceleration, gives 

dP  P1G'~li "{- P2G'C2i 
d---~ + Pcg 4 AG = 0, [32] 

where P~c and P~G are the wetted perimeters at the gas-liquid interfaces, given by 

P ~  = n(DI + 26) [33] 

and 

P2~ = rr(D2 - 26), [34] 

and '~li and "t'2i are the interfacial shear stresses. If one assumes that the gas velocity is much larger 
than the liquid velocity, which is true at these high gas flow rates, the interfacial shear stresses are 
given by 

zj~ = ½ fj, p~ U~, j = 1, 2, [35] 

where fji is the interfacial friction factor. The gas velocity is related to the void fraction by 

Ucs = EA UG. [36] 

Wallis (1969) gives an empirical expression for the interfacial friction factor in annular flow in a 
pipe of diameter D, 

f = 0.005 (1 + 300 ~-) .  [37] 
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Figure 20. Plan view of the eccentric 
annulus. 

It is proposed that [37] can be used for flow in an annulus provided that D is replaced by D] 
and D2 for the inner and the outer tubes, respectively. Combination of [31]-[37] yields 

dP O'OlpcU2s F D2+D' D-~DD2 ] = 0 .  [3.8] 
dz PGg q ¢](D-~2~--DI---)[D2-D--~ + 150(1 - E , ) +  37.5(1 --EA) 2(D 1)2 

An overall force balance over the segment Az gives 

dP ( d P )  =0,  [39] 
d--~ -I-[£APG-t-(I  - -EA)PL]g  d- - - d 2  fr 

where - (dP/dz) f  r represents the frictional losses. These losses can be estimated by performing an 
integral analysis, similar to the one suggested by Wallis (1969) for annular flow in pipes. This 
analysis relates the wall shear stress to an assumed velocity profile by means of single-phase 
correlations which are well-established. 

Suppose there is single-phase liquid flow in an annulus with mean velocity U. The frictional 
pressure drop is given by 

( dP'~ l f p L  Oa 
~ z } r , = ~ _  ~ . [40] 

Suppose now that only part of the annulus is occupied by the liquid (figure 19). It can be shown 
that 

R 1 -4- R 2 £A(RI --  RE) 
-~ [41] x l=  2 2 

and 

Rl + R2 EA(R2-- Ri) 
x: = ~ + 2 [42] 

Let u 1 and u2 denote the point velocities in the liquid films. The superficial liquid velocity ULS 
is given by 

4 (fR' ~R2 ) ULS = n(D2 _ D2 ) 2rcrut dr + 2nru2 dr . [43] 
I t/X2 / 
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We assume that the two velocity profiles follow a power law, 

u ,  _ 

U--~a x \ Rm __ R I J  [44] 

and 

u2 _{  RE-r "~'/" [45] 
Umax --  ~R2 ~._~ ll~'--mJ ' 

where Um~ is the maximum liquid velocity and Rr. is the point of maximum velocity which coincides 
with the point of zero shear stress, given by (Kays & Leung 1963) 

D2 ~ + \D2] [46] 
/ D,'x o 343 

Calculation of the average velocity 0 for a value of n = 7 gives U/Um,x -- 0.874. Knudsen & 
Katz (1979) report that experimental data for single-phase flow in annuli shows that 
O/Umax = 0.876 4- 0.02, in agreement with the above calculated value. Combination of [41]-[45] 
gives 

ULS = J(EA)O, [47] 

where 

J(EA)=(R2~2'28~2){(RmlRI)I/7[:RI(Xl--RI)8/7"Jt-7 (xI--RI) 15/7] 

Equations [47] and [48] relate ULS and EA for annular flow in an annulus to the average velocity 
O that the liquid would have if it were flowing alone. If  ULS and J(EA) are known, 0 is obtainable 
from [47] and the frictional losses can be calculated by [40], if an expression for the friction factor 
for single-phase flow in an annulus is known. The friction factor is expressed as before, 

f = Cr Re-", [151 

where Cf--0.0380 and n = 0.18. Substitution for - (dP/dz)fr  into [39] and elimination of the 
pressure drop term between [38] and [39] yields 

2CfpL(VL)"( ULs y-"  0.01pcU~s 
(PL-- pG)(1 -- eA)g + (Dh)' +" \J(EA)J ESA(D2 + D,) 

x L D - - ~ _  D ~ + 150(1 - CA) + 37.5(1 -- EA) 2 (D = 0, [49] 

where J(eg) is given by [48]. 
It has been shown that for two-phase flow in round tubes, the holdup model for slug flow is 

still valid in the churn flow region (Fernandes et al. 1983), namely 

Uos 
ECh = ESl = U---N-" [50] 

It is assumed that [50] also holds for flow in an annulus and UN is given by [23]. Hence, the 
transition to annular flow in an annulus occurs when 

CCh = EA. [51] 

The locus of the transition points has been found by simultaneous solution of [51], [50], [23], 
[41], [42], [46], [48] and [49] and is shown as curve J in figures 16(a, b). Good agreement is observed 
with the experimental data for both measuring stations. 
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B. Eccentric Annulus 

Experimental data derived in this study indicated small variations in the flow pattern transitions 
between the concentric and the eccentric annulus (eccentricity 50%), although certain details of the 
flow are different. An analysis will be carried out for the eccentric annulus similar to that performed 
for the concentric annulus and it will be shown that slight modifications of the theory developed 
above can predict the effect of eccentricity on the flow pattern transitions. 

Bubble-slug flow transition 

Low liquidflow rates. Visual observations indicate that at low liquid and gas flow rates, the 
bubble density is small and the bubbles move preferentially on the wide side of the annulus. As 
the gas flow rate is increased, the bubble density increases, while only a few bubbles are observed 
in the narrow gap. Based on these observations, it is suggested that the transition from bubble to 
slug flow occurs when the void fraction is 0.25 locally. The analysis below estimates the 
cross-sectional area of the eccentric annulus through which the distributed bubbles are most likely 
to flow. 

It is assumed that the presence of the inner tube does not affect the bubble size distribution during 
bubble flow. Experimental evidence indicates that typical bubble size distribution is 3-5 mm during 
bubble flow approaching the transition to slug flow in round tubes. For the purposes of 
computations, a bubble diameter da = 4 mm is used. The final results are relatively insensitive to 
the particular choice of d, in the range 3-5 mm. The plan view of the cross-sectional area of  the 
eccentric annulus is shown in figure 20. It can be shown that 

Ao, = (x/R2 - e 2 sin 2 co + e cos co): de) - 0'RI 2, [52] 

where Ao, is the cross-sectional area of the sector O' and e is the distance between the centers of 
the tubes. It is assumed that the bubbles are spherical and arranged in a cubic lattice and that the 
closest distance between the bubbles before the transition to slug flow is approximately half their 
radius. Hence, the smallest value that dcan take is dm= da/8 + da + d./4 + d, + d./8 = 10 mm, upon 
using the value of d. = 4 ram. The annulus gap d is given by (Iyoho & Azar 1981): 

2 ' 0 '  0 ' .  d = x / R z - e - s i n  2 - - R l + e c o s  [53] 

For d = din, [53] gives the maximum value of 0', 0e, which describes the area of  the annulus, Aoo, 
available for gas flow, in other words, gas flows mainly through the area defined by -0¢  ~< 0' ~< 0~. 
For the annulus of the present study, 0e = 1.93 rad. Hence, the transition to slug flow takes place 
when the void fraction reaches the value of 0.25 in the area defined by 0~. The overall void fraction 
Et is calculated by 

A°° [54] 
G = E A--7' 

where E is the local void fraction. Equation [7] still holds since it is based on the overall void 
fraction. The following procedure is therefore proposed to determine the bubble to slug flow 
transition in an eccentric annulus (any diameter ratio and eccentricity): 

(a) determine 0~ such that 

1 - sin 2 0e - + cos 0e = - -  
R2' 

where dm= 10 mm; 

(b) calculate Aoe/At by 

I  ̂~° (x/R~ - e 2 sin 2 co + e cos co)2 do) - OeR~ 
A ~  e d o  

At - R ,  =) " 
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(c) let E = ET = 0.25; 
(d) calculate Et = E x (AoJAt); 
(e) calculate the locus of the points at the transition from bubble to slug flow by 

ULS = - -  Uos -- (1 - E,) 3/~ 
E, L ~-L J" 

For the annulus of  this study and for an air-water system at 25°C and a pressure of 105 N/m s, 
this model gives 

ULS = 4.08 U~s -- 0.22 m/s [55] 

and the solution is shown in figures 21(a,b) as curve E. Good agreement between the theory and 
experiments is observed for both measuring stations. Comparison of the results for the concentric 
and the eccentric annulus (figures 16 and 21) shows that the effect of the degree of eccentricity for 
this transition is minor. 

High liquidflow rates. At high liquid rates, smaller size bubbles are produced by the breakup 
process due to turbulent fluctuations. Hence, the above analysis does not hold and the full flow 
area of  the eccentric annulus can carry bubbles. The same transition criteria, proposed for the 
concentric annulus, hold also for the eccentric annulus, provided that the friction factor is 
calculated by 

f = 0.0342(Re) -°~s, [56] 

derived from interpolation of the experimental data of  Jonsson & Sparrow (1966) for the eccentric 
annulus in this study. Hence, [16] becomes 

U M = ULS--]- UGS = 1.792 m/s [57] 

and is shown as curve F in figures 21 (a, b). Curve F terminates at curve G, which relates ULS and 
UGS for E = 0.52 and is given by [18], as for the concentric annulus. Comparison of  [57] and [17] 
indicates no significant differences for this transition between the concentric and the eccentric 
annulus. 

Slug-churn flow transition 
Experimental results indicate that the degree of  eccentricity has a small effect on the bubble rise 

velocity in a stagnant liquid, while there is no effect on the propagation velocity in slug flow, if 
the former is taken into account (Kelessidis 1986). The measured rise velocity in a stagnant liquid 
for the eccentric annulus in this study was found to be URE = 0.356 m/s, while the propagation 
velocity in slug flow is given by 

UN = 1.55UM + URE m/s. [58] 
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annulus: (a) MS # 1; (b) MS # 2. Key as in figures 16(a,b). 



190 v . c .  KELESSIDIS and A. E. DUKLER 

The proposed model for the transition from slug to churn flow indicates that the entrance length 
over which churning may be observed is primarily dependent on U~. Hence, [29] is shown in figures 
21(a,b) as curves H-1 and H-2 corresponding to the two axial locations: IE = 142Dh, UM = 1.19 m/s, 
and IE = 202Dh, UM = 1.79 m/s, respectively. The agreement with the data may be considered good 
for both measuring locations. 

Churn-annular flow transition 

A similar procedure to that followed for the concentric annulus may be used for the eccentric 
annulus to predict this transition. Departures, however, are expected from the power-law velocity 
profiles assumed for the velocities in the liquid films, since the velocity varies in the radial as well 
as in the peripheral direction. It seems, therefore, that a complete solution of turbulent flow in an 
eccentric annulus would be necessary. If, however, the results for the average liquid velocity, 
obtained from the analysis for the concentric annulus, are used, the predicted transition from churn 
to annular flow in the eccentric annulus agrees well with the experimental data. This result is not 
surprising, since the liquid films are thin and the area over which the velocity profile is integrated 
is small, so that any errors introduced in the assumed velocity profile do not have a large impact 
on the final solution. The same procedure was therefore followed, using URE instead of URc, and 
Cr = 0.0342. The results are shown as curve J in figures 21(a,b) for the two measuring locations. 
Good agreement is observed with the experimental results for both measuring stations. 

CONCLUSION 

Data have been collected which identify flow pattern transitions in a concentric and an eccentric 
annulus (eccentricity 50%). Criteria have been developed to provide an objective way for the 
identification of flow patterns as well as of flow pattern transitions, based on PDF analysis of 
voltage-time traces obtained from conductivity probes. Mathematical models have been developed, 
based on physical mechanisms suggested for each flow pattern transition, which predict the flow 
rates for which these transitions take place in concentric annuli. Modifications of the theory to 
predict the effect of eccentricity on the flow pattern transitions indicate that the degree of 
eccentricity has a minor effect on the transitions. This is in agreement with the experimental data. 
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